
AIRBNB DATABASE MANAGEMENT SYSTEM

Abstract — As the urge of people towards exploring the world

keeps on increasing, not only the famous cities but also exotic

suburban places are also getting flooded with tourists. Over the

past few years (pre-covid), tourism is at boom enabling people

to visit and explore the places worldwide. Airbnb has turned

into an extremely famous decision among explorers all over the

planet for the sort of novel encounters that they give and

furthermore to introducing an option in contrast to expensive

lodgings. Airbnb does links landlords and tourist visitors by

providing an accommodation. The problem that we are going to

address is eliminating the inconsistency in Airbnb dataset by

creating and normalizing the database system provides

efficiency in storing and accessing the huge amount of data and

provides hassle free user interface to the users. Normalization

using BCNF and query analysis are performed for the dataset.

Keywords— efficiency, Normalization, user interface, BCNF

I. INTRODUCTION

Airbnb is a web-based commercial center that organizes

and offers rooms or houses in which individuals can stay

temporarily with family. The organization is only a merchant

that acts as an interface between tenants and property owners,

then, at that point, gets commissions as a money for each

reserving done by a user from landlord. Common people who

want to enjoy their vacation by staying in an affordable house

to feel like a home-atmosphere will be able to use our database

to check the availability of the houses [4]. Our database

provides all listings from cheapest till expensive rental places

based on user choices with distinctive pricing strategy. The

need of database is because of its efficiency. The database can

store millions of data efficiently without any disruption

whereas excel can be unmanageable at some point of time if

excel size is huge. There is no limitation is database whereas

excel sheet has limitation of data. Since customer data are

crucial, storing in a database will be more secured than saving

it has an excel file. Hence, for this project we are storing our

customer data in a database in separate schema as per the

requirement [5].

II. DATA RESOURCE

The dataset has been extracted from insideairbnb.com

website which have airbnb datasets (listings, calendar and

pricings) of almost all the major cities in the world. The data

behind the Inside Airbnb site is sourced from publicly

available information from the Airbnb site. The data has been

analyzed, cleansed and aggregated to facilitate public

discussion [1]. Among them we used listings of five major

cities in United States which are as follows: Chicago, Dallas,

New York, San Francisco and New Jersey. These datasets

include all the details related to house listings, house

availability (calendar) and reviews of that listing. Initially we

created 3 tables from dataset obtained. After applying BCNF,

we came up with 11 tables and further normalizing the

dataset, we ended with 13 relations.

III. ENTITY RELATION SCHEMA

ER diagram illustrates how the entities relate to each other in

the database. Here, the original table is normalized to 13

different tables to ensure that there is direct relationship

between data and primary key. ER diagrams are related to

data structure diagrams (DSDs), which focus on the

relationships of elements within entities instead of

relationships between entities themselves. ER diagrams also

are often used in conjunction with data flow diagrams

(DFDs), which map out the flow of information for processes

or systems [2]. For our dataset, the listings table, calendar

table and reviews table are normalized to following tables –

booking, host, listing_address, listing_amenities,

listing_details, listing_pricings, listing_reviews,

listings_state, listings, location_xwlk, status_xwlk, users.

Amritha Subburayan

Engineering and Applied Sciences

Buffalo, New York

asubbura@buffalo.edu

Kamalnath Sathyamurthy

Engineering and Applied Sciences

Buffalo, New York

Kamalnat@buffalo.edu

Sanjay Aravind Loganathan Ravichandran

Engineering and Applied Sciences

Buffalo, New York

Sanjayar@buffalo.edu

Fig a. Relation and its attributes

Database Summary

Database 1

Schema 1

Roles 3

Relations/Tables 13

Views 1

Indices 39

Sequences 8

Functions 2

Trigger Functions 2

Triggers 2

Stored Procedures 1

Table b. Summary of database creation

Table c. Relations created in the database and its description

Table d. Views created

Table e. Functions and its purpose in database

Table f. Trigger functions and its usage in database

Table g. Stored Procedure and its usage in database

IV. NORMALIZING THE DATASET USING BOYCE-CODD

NORMAL FORM (BCNF)

BCNF is used to normalize multidimensional databases

until there is no more normalization can be carried out in the

database. It helps to reduce redundancy and maintains

integrity in the database. It ensures that there is no duplicate

values in the database. To obtain this, first the relation should

be in 3NF and at least one of the reference tables should

contain a primary key. For out database, we have normalized

our database to ensure that the relation contains only data that

are directly related to primary key. After normalizing the

original data, there were total 13 tables obtained out of 3 tables

which is now in BCNF form. From the original listings table,

we had more two primary keys that are referred by another

table. Hence, we separated the table that has primary key and

the attribute that are directly related to the primary keys. For

example, Host_Id primary key has been separated and added

to host table which holds details related to hosts. Likewise,

listings details have been added with listing_id primary key

that can be referred by other tables. We normalized the data

by ensuring that attributes are related only to the primary key.

V. QUERY IMPLEMENTATION

After normalization using BCNF, analyzation has been

performed to understand the statistics of the airbnb market.

Few assumptions were also made to understand how the

database works.

Few analyzations on dataset have been perforned using SQL.

Below are few findings that was performed on the data.

Query1: How many hosts has been added yearly from the

start?

Description of the logic: This query is used to check how

many airbnb hosts has been since the start and to check which

year played major role in revenue for airbnb

SQL Statement:

WITH HOST1 AS (SELECT DISTINCT host_id,

extract(YEAR FROM host_since::date) as YEAR FROM

host) SELECT COUNT(host_id) AS TOTAL, YEAR FROM

HOST1 GROUP BY YEAR ORDER BY TOTAL DESC

Output:

Query 2: Which place does receive highest rating? Less

expensive or more expensive ones?

Description of the logic: This query is used to check whether

the highest reviews comes from expensive listings or less

expensive listings. This is to provide clear view for people

who wants to check in both the places.

SQL Statement:

Select a.reviews_score_overall,

sum(a.Rental_below_hundred) as

total_Rental_below_hundred,

sum(a.Rental_between_100_1000) as

total_Rental_between_100_1000,

sum(a.Rental_above_1000) as total_Rental_above_1000

from (select listing_reviews.reviews_score_overall, CASE

WHEN listing_pricings.listing_rental_per_day < '100' then 1

else 0 end as Rental_below_hundred, CASE WHEN

listing_pricings.listing_rental_per_day > '100' and

listing_pricings.listing_rental_per_day <= '1000' then 1 else 0

end as Rental_between_100_1000, CASE WHEN

listing_pricings.listing_rental_per_day > '1000' then 1 else 0

end as Rental_above_1000 from listing_reviews join

listing_pricings on listing_reviews.listing_id =

listing_pricings.listing_id)a group by

a.reviews_score_overall order by reviews_score_overall desc

Output:

Query 3: Which type of accommodations are in huge

number per city?

Description of the logic: This query is to provide clear

understanding of the number of type of listings are present in

each city.

SQL Statement:

select abc.* from (select ab.*, rank() over (partition by

ab.location_city order by ab.total_count desc) from (select

c.location_city, count(a.listing_id) as total_count,

a.listing_property_type from listing_details a inner join

listings b on a.listing_id = b.listing_id inner join

listing_address d on b.address_id = d.address_id inner join

location_xwlk c on d.listing_location_id = c.location_id

group by c.location_city,a.listing_property_type)ab)abc

where rank <= 3

Output:

Query 4: How many revenues does each type of properties

produces?

Description of the logic: This query lists the total revenue

produces by each type of properties seperately. This may help

new hosts to decide which type of property they can lease to

see some profit.

SQL Statement:

select b.listing_property_type, sum(a.listing_rental_per_day)

as total_revenue from listing_pricings a inner join

listing_details b on a.listing_id = b.listing_id group by

b.listing_property_type order by total_revenue desc

Output:

Query 5: Lists top listings based on the review scores.

Description of the logic: This query lists all the listings

review from top till bottom. This can help users to analyse

before they move in.

SQL Statement:

select distinct listings.listing_name,

max(listing_reviews.reviews_score_overall) as max_review

from listings join listing_reviews on listings.listing_id =

listing_reviews.listing_id group by listing_name order by

max_review desc

Output:

QUERY OPTIMIZATION:

Below are few queries that are optimized by using indexing to

perform efficiently. Below table lists the query statement, its

description and execution time before and after indexing.

Before Optimization

After Optimization

VI. USER INTERFACE

A User Interface has been developed for the users to interact

with the airbnb management system. It is developed using

Angular Framework, Node.js, HTML5, CSS3, and express

server to connect the UI to the database. The UI comprises of

the following modules:

• Register

• Sign-in

• User homepage

• Book property

• View my bookings

• Make me host

Register:

When a user opens the website for the first time, he/she needs

to register in order to use the application. When user fills the

register form, the details are added to the Users table in the

database.

Sign-in

A registered user can log in to the application by entering the

credentials. The entered credentials are then checked in the

users table and if present, the user will be able to login else

error message is displayed.

User homepage
When a user logs in, the user will be able to view all the

listings that are available and can book if they wish to. All the

QUERY OPTIMIZATION USING INDEXING

Query Statement Description Execution time before Optimization Execution time after Optimization

SELECT year, current_year_host, CASE WHEN prev_year_host is null then 0 else

prev_year_host end, CASE WHEN prev_year_host is null then 100 else

round(((current_year_host - prev_year_host)/prev_year_host:: FLOAT*100)) end as

rate_of_growth FROM (SELECT year, current_year_host, LAG(current_year_host, 1) OVER

(ORDER BY year) as prev_year_host FROM (SELECT extract(year FROM host_since::date)

as year, count(host_id) as current_year_host FROM host WHERE host_since IS NOT NULL

GROUP BY extract(year FROM host_since::date) ORDER BY year asc) a) b;

This query is used to evaluate the growth metrics of airbnb by comparing the

current year with previous year. This checks how many new hosts has been added

from each year and check if it exceeds previous year addition. If current year hosts

is greater than previous year then airbnb growth is positive and increasing in

growth.

 59.741ms 17.918ms

select a.reviews_score_overall, sum(a.Rental_below_hundred) as

total_Rental_below_hundred, sum(a.Rental_between_100_1000) as

total_Rental_between_100_1000, sum(a.Rental_above_1000) as

total_Rental_above_1000 from (select listing_reviews.reviews_score_overall, CASE

WHEN listing_pricings.listing_rental_per_day < '100' then 1 else 0 end as

Rental_below_hundred, CASE WHEN listing_pricings.listing_rental_per_day > '100' and

listing_pricings.listing_rental_per_day <= '1000' then 1 else 0 end as

Rental_between_100_1000,CASE WHEN listing_pricings.listing_rental_per_day > '1000'

then 1 else 0 end as Rental_above_1000 from listing_reviews join listing_pricings on

listing_reviews.listing_id = listing_pricings.listing_id)a group by

a.reviews_score_overall order by reviews_score_overall desc

This query is used to find the relationship between rental pricing and review.

Distribution of review around thr pricing between below 100, between 100 and

1000 and above 1000.

 70.71ms 23.918ms

select abcde.* from (select abcd.*, rank() over (partition by abcd.complete_year order by

abcd.total_turnover desc) from (select c.listing_name, abc.complete_year,

abc.total_turnover from (select ab.listing_id, sum(ab.total_fee) as total_turnover,

ab.complete_year from (SELECT a.listing_id, b.listing_rental_per_day + b.cleaning_fee as

total_fee, extract(YEAR FROM a.listing_date::date) as complete_year FROM

listing_calendar a inner join listing_pricings b on a.listing_id = b.listing_id where

a.is_available = true)ab group by ab.listing_id, ab.complete_year) abc inner join listings

c on c.listing_id = abc.listing_id)abcd)abcde where rank<= 5 order by

abcde.complete_year desc

This query is to find the listing with highest turnover for the complete year for all

the cities in database,
 45.89ms 27.92ms

listings from the listings table are fetched and displayed in

pagination.

Book property
The user can select a particular listing and book it for a

particular period. Once the user clicks the “book property”

button present under the listing details, the user will be

navigated to the booking form where the user will be asked

to fill a form in order to book that property. If the listing is

available during that period, the listing will be booked

successfully, and a booking ID will be returned. Otherwise,

an error message is displayed.

View my listings

A user can view all the bookings made my themselves in this

section. All the listings in the bookings table for that

particular user is fetched and shown in the UI.

Make me host

If a particular is not a host, the user can nominate themselves

to be one. To do this, user can click on the “Make me host”

button on the user home page, and they will be asked to fill a

form in order to become a host. Once the form is filled, a new

record is added in the hosts table, and a trigger is used to make

the “is_host” attribute in the Users table as ‘Y’.

VII. CONCLUSION:

From this project, we have successfully collected, created and

inserted data into the database. With help of normalization

technique, 13 tables have been created to implement query

analysis on the collected dataset. Also, UI interface has been

implemented which integrated with the database and

successfully were able to add the booking details to the

booking table when registered by the user in the interface of

our website. We further tend to improve our database and UI

by adding further constraints in future.

VIII. REFERENCES:

1. http://insideairbnb.com/

2. https://www.lucidchart.com/pages/er-diagrams

3.

https://www.researchgate.net/publication/335030680_Dyna

mic_pricing_and_benchmarking_in_AirBnB

4.

https://www.researchgate.net/publication/333021103_Under

standing_AirBnB_in_Fourteen_European_Cities

http://insideairbnb.com/
https://www.lucidchart.com/pages/er-diagrams
https://www.researchgate.net/publication/335030680_Dynamic_pricing_and_benchmarking_in_AirBnB
https://www.researchgate.net/publication/335030680_Dynamic_pricing_and_benchmarking_in_AirBnB
https://www.researchgate.net/publication/333021103_Understanding_AirBnB_in_Fourteen_European_Cities
https://www.researchgate.net/publication/333021103_Understanding_AirBnB_in_Fourteen_European_Cities

	I. Introduction
	II. Data Resource
	III. Entity Relation Schema
	IV. Normalizing the dataset using Boyce-Codd Normal Form (BCNF)
	V. Query Implementation
	VI. User Interface
	VII. Conclusion:
	VIII. References:

