AIRBNB DATABASE MANAGEMENT SYSTEM

Amritha Subburayan
Engineering and Applied Sciences
Buffalo, New York
asubbura@buffalo.edu

Abstract — As the urge of people towards exploring the world
keeps on increasing, not only the famous cities but also exotic
suburban places are also getting flooded with tourists. Over the
past few years (pre-covid), tourism is at boom enabling people
to visit and explore the places worldwide. Airbnb has turned
into an extremely famous decision among explorers all over the
planet for the sort of novel encounters that they give and
furthermore to introducing an option in contrast to expensive
lodgings. Airbnb does links landlords and tourist visitors by
providing an accommodation. The problem that we are going to
address is eliminating the inconsistency in Airbnb dataset by
creating and normalizing the database system provides
efficiency in storing and accessing the huge amount of data and
provides hassle free user interface to the users. Normalization
using BCNF and query analysis are performed for the dataset.

Keywords— efficiency, Normalization, user interface, BCNF

I. INTRODUCTION

Airbnb is a web-based commercial center that organizes
and offers rooms or houses in which individuals can stay
temporarily with family. The organization is only a merchant
that acts as an interface between tenants and property owners,
then, at that point, gets commissions as a money for each
reserving done by a user from landlord. Common people who
want to enjoy their vacation by staying in an affordable house
to feel like a home-atmosphere will be able to use our database
to check the availability of the houses [4]. Our database
provides all listings from cheapest till expensive rental places
based on user choices with distinctive pricing strategy. The
need of database is because of its efficiency. The database can
store millions of data efficiently without any disruption
whereas excel can be unmanageable at some point of time if
excel size is huge. There is no limitation is database whereas
excel sheet has limitation of data. Since customer data are
crucial, storing in a database will be more secured than saving
it has an excel file. Hence, for this project we are storing our
customer data in a database in separate schema as per the
requirement [5].

Kamalnath Sathyamurthy
Engineering and Applied Sciences
Buffalo, New York
Kamalnat@buffalo.edu

Sanjay Aravind Loganathan Ravichandran
Engineering and Applied Sciences
Buffalo, New York
Sanjayar@buffalo.edu

Il. DATA RESOURCE

The dataset has been extracted from insideairbnb.com
website which have airbnb datasets (listings, calendar and
pricings) of almost all the major cities in the world. The data
behind the Inside Airbnb site is sourced from publicly
available information from the Airbnb site. The data has been
analyzed, cleansed and aggregated to facilitate public
discussion [1]. Among them we used listings of five major
cities in United States which are as follows: Chicago, Dallas,
New York, San Francisco and New Jersey. These datasets
include all the details related to house listings, house
availability (calendar) and reviews of that listing. Initially we
created 3 tables from dataset obtained. After applying BCNF,
we came up with 11 tables and further normalizing the
dataset, we ended with 13 relations.

I11. ENTITY RELATION SCHEMA

ER diagram illustrates how the entities relate to each other in
the database. Here, the original table is normalized to 13
different tables to ensure that there is direct relationship
between data and primary key. ER diagrams are related to
data structure diagrams (DSDs), which focus on the
relationships of elements within entities instead of
relationships between entities themselves. ER diagrams also
are often used in conjunction with data flow diagrams
(DFDs), which map out the flow of information for processes
or systems [2]. For our dataset, the listings table, calendar
table and reviews table are normalized to following tables —
booking, host, listing_address, listing_amenities,
listing_details, listing_pricings, listing_reviews,
listings_state, listings, location_xwilk, status_xwlk, users.

Fig a. Relation and its attributes

Database

Schema

Roles
Relations/Tables
Views

Indices
Sequences
Functions

Trigger Functions
Triggers

Stored Procedures

Database Summary
1
1
3

Table b. Summary of database creation

Relations

status_xwik

listing_state

location_xwik

host

listing_address

listings

listing_amenities

listing_details

listing_pricings

listing_calendar

users

listing_reviews

booking

Description
We will be using this table as crosswalk table in order
to refer the statuses of bookings, host venfication. For
example, status 1 in this table is with descrption
"Venfied'.
This table is crosswalk table to refer all the states in
the US wath its state code. For Example, NY 15 used for
New York.

This table is crosswalk table to denote the cities of
listings/host. We have 3 columns in this table which
denotes city and state code. For example, ifhost
location is with location id 1,1t means that host's city
is chicago and state is lllinoss.

This table denotes the host details who organizes and
offers rooms or houses. This table contains 11
columns where host_id acts as primary key.

This table denotes the listings address details. This
table ins S col where address_id is primary
key and listings_location_id acts as foreign key.

This table holds all the details related to the listings
like listing name, its description, nesghborhood.
Host_id and address_id acts as a foreign key.

This table holds the interior details in the house like it
TV, WIFL, AC, Heating, Dryer, etc. If these facilities
does available or not.

This table holds col that describes the Yy
facilities provided by the listings like number of
bath bed: bher of peaple it can

accommodate, property type, etc.

This table denotes the listings pricing details like rent
per day, cleaning charge, and fee for extra per person.

This table denotes the availablity details of cach
listings like listing posted date, rent per day and
whether its available or not.

This table defines the users details like user name,
gender and date of birth for suthentication.

This table holds the reviews given by user for the
listings they stayed. Ths table has 10 columns where
scare for each services has been calculated.

This table holds all the details of the users and listings
registered by the users. This 15 to check and analyse
the booking details and to close certiun histing if3ts
booked by one user to avoid conflict.

Table c. Relations created in the database and its description

Views

host_period_view

Functions

random_between

random_stning_pavel

Description
We have used this view in order to fetch the time frame of'any
user being as host. Since we used current_date in this view, it
will fetch the total period the user served as host as of current
date.

Table d. Views created

Description
This function is used to generate random 7 digit big integer
between any two input big integers. We have used this function
tog dom phone bers for the users. First 3 digits

corresponds to area code for which we used rand operation to
select between 3 area codes.

dom text and ics of

This function is used to g
given length. We used this function to generate password

column in the users table.

Table e. Functions and its purpose in database

Trigger function Description

3 = This function is to update total_listings_count on publichosts
function_number_of listings = T
z = table whenever data 1s inserted or deleted in listings table.
This function is to updateis_host in user table in order to
update the column to 'Y whenever the user is added in hosts
table.

Table f. Trigger functions and its usage in database

trg_update_is_host

Stored Procedure Description

book
i while passing the values that needs to be loaded into table.

Table g. Stored Procedure and its usage in database

1V. NORMALIZING THE DATASET USING BOYCE-CODD
NORMAL FORM (BCNF)

BCNF is used to normalize multidimensional databases
until there is no more normalization can be carried out in the
database. It helps to reduce redundancy and maintains
integrity in the database. It ensures that there is no duplicate
values in the database. To obtain this, first the relation should
be in 3NF and at least one of the reference tables should
contain a primary key. For out database, we have normalized
our database to ensure that the relation contains only data that
are directly related to primary key. After normalizing the
original data, there were total 13 tables obtained out of 3 tables
which is now in BCNF form. From the original listings table,
we had more two primary keys that are referred by another
table. Hence, we separated the table that has primary key and
the attribute that are directly related to the primary keys. For
example, Host_Id primary key has been separated and added
to host table which holds details related to hosts. Likewise,
listings details have been added with listing_id primary key
that can be referred by other tables. We normalized the data
by ensuring that attributes are related only to the primary key.

V. QUERY IMPLEMENTATION

After normalization using BCNF, analyzation has been
performed to understand the statistics of the airbnb market.
Few assumptions were also made to understand how the
database works.

Few analyzations on dataset have been perforned using SQL.
Below are few findings that was performed on the data.

Queryl: How many hosts has been added yearly from the
start?

This stored procedure is to insert records into booking table

Description of the logic: This query is used to check how
many airbnb hosts has been since the start and to check which
year played major role in revenue for airbnb

SQL Statement:

WITH HOST1 AS (SELECT DISTINCT host id,
extract(YEAR FROM host_since::date) as YEAR FROM
host) SELECT COUNT (host_id) ASTOTAL, YEAR FROM
HOST1 GROUP BY YEAR ORDER BY TOTAL DESC

Output:
total year
P bqgmﬁ numeri
1 553 2015
2 513 2016
3 369 2014
4 352 2017
S 344 2018
6 294 2019
7 275 2013
8 180 2021
9 159 2012
10 153 2020
11 104 2011
12 25 2010
13 15 2009
14 4 2008

Query 2: Which place does receive highest rating? Less
expensive or more expensive ones?

Description of the logic: This query is used to check whether
the highest reviews comes from expensive listings or less
expensive listings. This is to provide clear view for people
who wants to check in both the places.

SQL Statement:

Select a.reviews_score_overall,
sum(a.Rental_below_hundred) as
total_Rental_below_hundred,

sum(a.Rental_between_100_1000) as

total_Rental_between_ 100 1000,

sum(a.Rental_above 1000) as total Rental above 1000
from (select listing_reviews.reviews_score_overall, CASE
WHEN listing_pricings.listing_rental_per_day < '100' then 1
else 0 end as Rental_below_hundred, CASE WHEN
listing_pricings.listing_rental_per_ day > '100' and
listing_pricings.listing_rental_per_day <='1000' then 1 else 0
end as Rental between 100 1000, CASE WHEN
listing_pricings.listing_rental_per_day > '1000' then 1 else 0
end as Rental_above_1000 from listing_reviews join

listing_pricings on listing_reviews.listing_id =
listing_pricings.listing_id)a group by
a.reviews_score_overall order by reviews_score_overall desc

Output:

Notifications Data Output Explain Messages
) m?:i_(sxrle_ovmlh lt:;:l;remul.belw_hundre% lho::k‘.rerﬂlLbﬂweer\.IOO_‘loo% ::’awl‘,[remal_above.loo%
1 5.00 203 7 0
2 475 766 743 5
3 450 1999 1926 8
4 425 3985 3807 19
5 4.00 6852 6558 35
6 375 10348 9653 54
7 3,50 13262 127112 57
8 325 15739 15139 69
9 3.00 16756 15913 78
10 275 15885 15243 68
n 250 13211 12768 67
12 225 10216 9731 40
13 2.00 7082 6492 36
14 1.75 3840 3814 22
15 1.50 2060 1868 12
16 125 754 754 5
17 1.00 193 184 0

Query 3: Which type of accommodations are in huge
number per city?

Description of the logic: This query is to provide clear
understanding of the number of type of listings are present in
each city.

SQL Statement:

select abc.* from (select ab.*, rank() over (partition by
ab.location_city order by ab.total _count desc) from (select
c.location_city, count(a.listing_id) as total _count,
a.listing_property_type from listing_details a inner join
listings b on alisting_id = b.listing_id inner join
listing_address d on b.address_id = d.address_id inner join
location_xwlk ¢ on d.listing_location_id = c.location_id

group by c.location_city,a.listing_property_type)ab)abc
where rank <=3
Output:
Notifications Data Output Explain Messages
location_city | totalcount o listing_property_type rank o
4 character varying (100! bigint character varying (100) bigint
1 CHICAGO 1049 Entire rental unit 1
2 CHICAGO 193 Private room in rental unit 2
3 CHICAGOD 187 Entire condominium (condo) 3
Private room in rental unit
4 DALLAS 827 Entire rentai urit 1
5 DALLAS 194 Entire condominium (condo) 2
6 DALLAS 152 Private room in rental unit 3
7 JERSEY CITY 617 Entire rental unit 1
8 JERSEY CITY 179 Entire condominium (condo) 2
9 JERSEY CITY 149 Private room in rental unit 3
10 NEW YORK CITY 5§92 Entire rental unit 1
1 NEW YORK CITY 160 Entire condominium (condo) 2
12 MNEW YORK CITY 122 Private room in rental unit 3

Query 4: How many revenues does each type of properties
produces?

Description of the logic: This query lists the total revenue
produces by each type of properties seperately. This may help
new hosts to decide which type of property they can lease to
see some profit.

SQL Statement:

select b.listing_property type, sum(a.listing_rental_per_day)
as total revenue from listing_pricings a inner join
listing_details b on a.listing_id = b.listing_id group by
b.listing_property_type order by total _revenue desc

Output:
Notifications Data Output Explain Messages
Iisting_property_type a total_revenue a
4 character varying (100) money
1 Entire rental unit $540,741.00
2 Entire residential home $149,781.00
3 Entire condominium (condo) $141,020.00
4 Private room in rental unit $37,450.00
5 Room in boutique hotel $30,218.00
6 Private room in residential ho.. $28,363.00
7 Entire townhouse $27,022.00
8 Entire loft $26,595.00
9 Entire serviced apartment $26,292.00
10 Private room in condominium... $20,515.00
11 Entire guest suite $19,983.00
12 Room in hotel $8,118.00
13 Private room in townhouse $4,682.00
14 Entire guesthouse $4,654.00
15 Room in serviced apartment $3,677.00

Query 5: Lists top listings based on the review scores.

Description of the logic: This query lists all the listings
review from top till bottom. This can help users to analyse
before they move in.

SQL Statement:

select distinct listings.listing_name,
max(listing_reviews.reviews_score_overall) as max_review
from listings join listing_reviews on listings.listing_id =
listing_reviews.listing_id group by listing_name order by
max_review desc

Output:

arscervaing (2500 a
#1 neighborhood in Chicago w/ private balcony 5.0(
Comfortable & Spacious Home Close to Downtown 50
02a. Full bed in Coed room - 3 mi to NWU 50
03a. Queen sized in coed room 50
18D Condo by downtown,parkake 50
1 Bedroom Apartment in Historic Did Town House 50
1 mile to USMLE & minutes to O'Hare in Safest Area 50
15 Minutes to Everything. Skyline View. Quiet 50
2 Bed Apartment with Balcony 50
2 Bedroom city apartment in the heart of Pilsen 5.0
2 Bedrooms are perfect for groups up to 3 guests 5.0
2 Bedrooms- Comfy Chicago Basement disinfected! 50|
2. MANSION BEDROOM 2- with PRIVATE BATH ROOM 5.0
2/10ne Block to Fullerton L Red Line Deck & Yard s0f
2ZBR Bursting w/ Character in Hip Logan Square! 5.0

QUERY OPTIMIZATION:

Below are few queries that are optimized by using indexing to
perform efficiently. Below table lists the query statement, its
description and execution time before and after indexing.

‘QUERY QPTIMIZATION USING INDEXING.
Query Statement

Desription Fxceution e before Optimization Exceution e after

sa7aims 179s8ms

fewsround tr pricing between below 100, betuen 100 nd T071ms 23018ms

45.89ms 2152ms

Before Optimization

QUERY PLAN g
4 text
1 Subquery Scan onb (cost=248.95..359.47 rows=2105 width=56) (actual time=4.135..4.155 rows=14 loops=1)
2 [..]-> WindowAgg (cost=248.95.306.84 rows=2105 width=48) (actual time=4.132..4.146 rows=14 loops=1)
3 [.]-> Sort (cost=248.95..254.22 rows=2105 width=40) (actual time=3.961..3.964 rows="14 loops=1)
4 [.] Sort Key: (EXTRACT(year FROM host host_since))
5 [.] Sort Method: quicksort Memoary: 25kB
6 [.]-> HashAggregate (cost=106.45..132.76 rows=2105 width=40) (actual time=3.867..3.894 rows=14 loops=1)
7 [..] Group Key: EXTRACT(year FROM host.host_since)
8 [.]Batches:1 Memory Usage: 121kB
9 [.]-> SeqScan onhost (cost=0.00..89.75 rows=3340 width=36) (actual time=0.063..2.514 rows=3340 loops=1)
10 [..]Filter: (host_since IS NOT NULL)
11 Planning Time: 0.254 ms
12 Execution Time: 59.741 ms
After Optimization
QUERY PLAN a
4 text
1 Subquery Scan on b (cost=248.95..359.47 rows=2105 width=56) (actual time=2.857..2.874 rows=14 loops=1)
2 [..]-=> WindowAgg (cost=248.95..306.84 rows=2105 width=48) (actual time=2.853..2.866 rows=14 loops=1)
3 [..]-> Sort (cost=248.95..254.22 rows=2105 width=40) (actual time=2.815..2.817 rows=14 loops=1)
4 [.]Sort Key: (EXTRACT(year FROM host host_since))
5 [...] Sort Method: quicksort Memory: 25kB
6 [..] > HashAggregate (cost=106.45.132.76 rows=2105 width=40) (actual time=2.768..2.786 rows=14 loops=1)
7 [..] Group Key: EXTRACT(year FROM host host_since)
8 [.]Batches: 1 Memory Usage: 121kB
9 [..]-> Seq Scan on host (cost=0.00..89.75 rows=3340 width=36) (actual time=0.074..1.816 rows=3340 loops=1)
10 [..] Filter: (host_since IS NOT NULL)
11 Planning Time: 0.421 ms
12 Execution Time: 17.918 ms m

VI.

A User Interface has been developed for the users to interact
with the airbnb management system. It is developed using
Angular Framework, Node.js, HTML5, CSS3, and express
server to connect the Ul to the database. The Ul comprises of
the following modules:

e Register

e Sign-in

e User homepage

e Book property

e View my bookings

e Make me host

USER INTERFACE

Register:
When a user opens the website for the first time, he/she needs
to register in order to use the application. When user fills the
register form, the details are added to the Users table in the
database.

AIlRBNGB

FIRST NAME

PHONE NUMBER
Henerier

GENDER

DATE OF BIRTH

09/02/1894 S

EMAIL

Aeaadams09@gmai com

PASSWORD

Sign-in

A registered user can log in to the application by entering the
credentials. The entered credentials are then checked in the
users table and if present, the user will be able to login else
error message is displayed.

AIRBNB

User homepage
When a user logs in, the user will be able to view all the
listings that are available and can book if they wish to. All the

listings from the listings table are fetched and displayed in
pagination.

......

Book property

The user can select a particular listing and book it for a
particular period. Once the user clicks the “book property”
button present under the listing details, the user will be
navigated to the booking form where the user will be asked
to fill a form in order to book that property. If the listing is
available during that period, the listing will be booked
successfully, and a booking ID will be returned. Otherwise,
an error message is displayed.

View my listings
A user can view all the bookings made my themselves in this
section. All the listings in the bookings table for that
particular user is fetched and shown in the UI.

......

Make me host

If a particular is not a host, the user can nominate themselves
to be one. To do this, user can click on the “Make me host”
button on the user home page, and they will be asked to fill a
form in order to become a host. Once the form is filled, a new
record is added in the hosts table, and a trigger is used to make
the “is_host” attribute in the Users table as “Y".

AIRBNB

uuuuuuuu

VIlI. CONCLUSION:

From this project, we have successfully collected, created and
inserted data into the database. With help of normalization
technique, 13 tables have been created to implement query
analysis on the collected dataset. Also, Ul interface has been
implemented which integrated with the database and
successfully were able to add the booking details to the
booking table when registered by the user in the interface of
our website. We further tend to improve our database and Ul
by adding further constraints in future.

VIIl. REFERENCES:

1. http://insideairbnb.com/

2. https://www.lucidchart.com/pages/er-diagrams

3.
https://www.researchgate.net/publication/335030680 Dyna
mic_pricing_and benchmarking_in_AirBnB

4,
https://www.researchgate.net/publication/333021103 Under
standing_AirBnB_in_Fourteen European_Cities

http://insideairbnb.com/
https://www.lucidchart.com/pages/er-diagrams
https://www.researchgate.net/publication/335030680_Dynamic_pricing_and_benchmarking_in_AirBnB
https://www.researchgate.net/publication/335030680_Dynamic_pricing_and_benchmarking_in_AirBnB
https://www.researchgate.net/publication/333021103_Understanding_AirBnB_in_Fourteen_European_Cities
https://www.researchgate.net/publication/333021103_Understanding_AirBnB_in_Fourteen_European_Cities

	I. Introduction
	II. Data Resource
	III. Entity Relation Schema
	IV. Normalizing the dataset using Boyce-Codd Normal Form (BCNF)
	V. Query Implementation
	VI. User Interface
	VII. Conclusion:
	VIII. References:

